Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 529
Filtrar
1.
Cell Rep Methods ; 4(4): 100744, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38582075

RESUMO

A comprehensive analysis of site-specific protein O-glycosylation is hindered by the absence of a consensus O-glycosylation motif, the diversity of O-glycan structures, and the lack of a universal enzyme that cleaves attached O-glycans. Here, we report the development of a robust O-glycoproteomic workflow for analyzing complex biological samples by combining four different strategies: removal of N-glycans, complementary digestion using O-glycoprotease (IMPa) with/without another protease, glycopeptide enrichment, and mass spectrometry with fragmentation of glycopeptides using stepped collision energy. Using this workflow, we cataloged 474 O-glycopeptides on 189 O-glycosites derived from 79 O-glycoproteins from human plasma. These data revealed O-glycosylation of several abundant proteins that have not been previously reported. Because many of the proteins that contained unannotated O-glycosylation sites have been extensively studied, we wished to confirm glycosylation at these sites in a targeted fashion. Thus, we analyzed selected purified proteins (kininogen-1, fetuin-A, fibrinogen, apolipoprotein E, and plasminogen) in independent experiments and validated the previously unknown O-glycosites.


Assuntos
Glicoproteínas , Proteoma , Proteômica , Fluxo de Trabalho , Humanos , Glicosilação , Glicoproteínas/metabolismo , Glicoproteínas/química , Proteômica/métodos , Proteoma/metabolismo , Proteoma/análise , Glicopeptídeos/análise , Glicopeptídeos/química , Glicopeptídeos/metabolismo , Cininogênios/metabolismo , Cininogênios/química , Polissacarídeos/metabolismo , Apolipoproteínas E/metabolismo , Apolipoproteínas E/química , Fibrinogênio/metabolismo , Fibrinogênio/química , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/análise
2.
JCI Insight ; 9(7)2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587076

RESUMO

BACKGROUNDDiagnosis of PMM2-CDG, the most common congenital disorder of glycosylation (CDG), relies on measuring carbohydrate-deficient transferrin (CDT) and genetic testing. CDT tests have false negatives and may normalize with age. Site-specific changes in protein N-glycosylation have not been reported in sera in PMM2-CDG.METHODSUsing multistep mass spectrometry-based N-glycoproteomics, we analyzed sera from 72 individuals to discover and validate glycopeptide alterations. We performed comprehensive tandem mass tag-based discovery experiments in well-characterized patients and controls. Next, we developed a method for rapid profiling of additional samples. Finally, targeted mass spectrometry was used for validation in an independent set of samples in a blinded fashion.RESULTSOf the 3,342 N-glycopeptides identified, patients exhibited decrease in complex-type N-glycans and increase in truncated, mannose-rich, and hybrid species. We identified a glycopeptide from complement C4 carrying the glycan Man5GlcNAc2, which was not detected in controls, in 5 patients with normal CDT results, including 1 after liver transplant and 2 with a known genetic variant associated with mild disease, indicating greater sensitivity than CDT. It was detected by targeted analysis in 2 individuals with variants of uncertain significance in PMM2.CONCLUSIONComplement C4-derived Man5GlcNAc2 glycopeptide could be a biomarker for accurate diagnosis and therapeutic monitoring of patients with PMM2-CDG and other CDGs.FUNDINGU54NS115198 (Frontiers in Congenital Disorders of Glycosylation: NINDS; NCATS; Eunice Kennedy Shriver NICHD; Rare Disorders Consortium Disease Network); K08NS118119 (NINDS); Minnesota Partnership for Biotechnology and Medical Genomics; Rocket Fund; R01DK099551 (NIDDK); Mayo Clinic DERIVE Office; Mayo Clinic Center for Biomedical Discovery; IA/CRC/20/1/600002 (Center for Rare Disease Diagnosis, Research and Training; DBT/Wellcome Trust India Alliance).


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Complemento C4 , Glicopeptídeos , Biomarcadores , Polissacarídeos
3.
Cell Syst ; 15(4): 362-373.e7, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38554709

RESUMO

Predictive modeling of macromolecular recognition and protein-protein complementarity represents one of the cornerstones of biophysical sciences. However, such models are often hindered by the combinatorial complexity of interactions at the molecular interfaces. Exemplary of this problem is peptide presentation by the highly polymorphic major histocompatibility complex class I (MHC-I) molecule, a principal component of immune recognition. We developed human leukocyte antigen (HLA)-Inception, a deep biophysical convolutional neural network, which integrates molecular electrostatics to capture non-bonded interactions for predicting peptide binding motifs across 5,821 MHC-I alleles. These predictions of generated motifs correlate strongly with experimental peptide binding and presentation data. Beyond molecular interactions, the study demonstrates the application of predicted motifs in analyzing MHC-I allele associations with HIV disease progression and patient response to immune checkpoint inhibitors. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Antígenos de Histocompatibilidade Classe I , Peptídeos , Humanos , Eletricidade Estática , Ligação Proteica , Peptídeos/química , Antígenos HLA/genética , Antígenos HLA/metabolismo
4.
Cell Rep ; 43(3): 113883, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38430517

RESUMO

Phosphomannomutase 2-congenital disorder of glycosylation (PMM2-CDG) is a rare inborn error of metabolism caused by deficiency of the PMM2 enzyme, which leads to impaired protein glycosylation. While the disorder presents with primarily neurological symptoms, there is limited knowledge about the specific brain-related changes caused by PMM2 deficiency. Here, we demonstrate aberrant neural activity in 2D neuronal networks from PMM2-CDG individuals. Utilizing multi-omics datasets from 3D human cortical organoids (hCOs) derived from PMM2-CDG individuals, we identify widespread decreases in protein glycosylation, highlighting impaired glycosylation as a key pathological feature of PMM2-CDG, as well as impaired mitochondrial structure and abnormal glucose metabolism in PMM2-deficient hCOs, indicating disturbances in energy metabolism. Correlation between PMM2 enzymatic activity in hCOs and symptom severity suggests that the level of PMM2 enzyme function directly influences neurological manifestations. These findings enhance our understanding of specific brain-related perturbations associated with PMM2-CDG, offering insights into the underlying mechanisms and potential directions for therapeutic interventions.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases)/deficiência , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação
5.
Cell Death Differ ; 31(4): 405-416, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538744

RESUMO

BH3 mimetics, including the BCL2/BCLXL/BCLw inhibitor navitoclax and MCL1 inhibitors S64315 and tapotoclax, have undergone clinical testing for a variety of neoplasms. Because of toxicities, including thrombocytopenia after BCLXL inhibition as well as hematopoietic, hepatic and possible cardiac toxicities after MCL1 inhibition, there is substantial interest in finding agents that can safely sensitize neoplastic cells to these BH3 mimetics. Building on the observation that BH3 mimetic monotherapy induces AMP kinase (AMPK) activation in multiple acute leukemia cell lines, we report that the AMPK inhibitors (AMPKis) dorsomorphin and BAY-3827 sensitize these cells to navitoclax or MCL1 inhibitors. Cell fractionation and phosphoproteomic analyses suggest that sensitization by dorsomorphin involves dephosphorylation of the proapoptotic BCL2 family member BAD at Ser75 and Ser99, leading BAD to translocate to mitochondria and inhibit BCLXL. Consistent with these results, BAD knockout or mutation to BAD S75E/S99E abolishes the sensitizing effects of dorsomorphin. Conversely, dorsomorphin synergizes with navitoclax or the MCL1 inhibitor S63845 to induce cell death in primary acute leukemia samples ex vivo and increases the antitumor effects of navitoclax or S63845 in several xenograft models in vivo with little or no increase in toxicity in normal tissues. These results suggest that AMPK inhibition can sensitize acute leukemia to multiple BH3 mimetics, potentially allowing administration of lower doses while inducing similar antineoplastic effects.


Assuntos
Proteínas Quinases Ativadas por AMP , Compostos de Anilina , Proteína de Sequência 1 de Leucemia de Células Mieloides , Pirimidinas , Sulfonamidas , Proteína bcl-X , Humanos , Animais , Compostos de Anilina/farmacologia , Sulfonamidas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Camundongos , Proteína bcl-X/metabolismo , Proteína bcl-X/antagonistas & inibidores , Linhagem Celular Tumoral , Pirimidinas/farmacologia , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Pirazóis/farmacologia , Proteína de Morte Celular Associada a bcl/metabolismo , Apoptose/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Leucemia/tratamento farmacológico , Leucemia/patologia , Leucemia/metabolismo , Fosforilação/efeitos dos fármacos , Fragmentos de Peptídeos/farmacologia , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas/antagonistas & inibidores , Sinergismo Farmacológico
6.
bioRxiv ; 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38464033

RESUMO

The salivary gland (SG) is an essential organ that secretes saliva, which supports versatile oral function throughout life, and is maintained by elusive epithelial stem and progenitor cells (SGSPC). Unfortunately, aging, drugs, autoimmune disorders, and cancer treatments can lead to salivary dysfunction and associated health consequences. Despite many ongoing therapeutic efforts to mediate those conditions, investigating human SGSPC is challenging due to lack of standardized tissue collection, limited tissue access, and inadequate purification methods. Herein, we established a diverse and clinically annotated salivary regenerative biobanking at the Mayo Clinic, optimizing viable salivary cell isolation and clonal assays in both 2D and 3D-matrigel growth environments. Our analysis identified ductal epithelial cells in vitro enriched with SGSPC expressing the CD24/EpCAM/CD49f+ and PSMA- phenotype. We identified PSMA expression as a reliable SGSPC differentiation marker. Moreover, we identified progenitor cell types with shared phenotypes exhibiting three distinct clonal patterns of salivary differentiation in a 2D environment. Leveraging innovative label-free unbiased LC-MS/MS-based single-cell proteomics, we identified 819 proteins across 71 single cell proteome datasets from purified progenitor-enriched parotid gland (PG) and sub-mandibular gland (SMG) cultures. We identified distinctive co-expression of proteins, such as KRT1/5/13/14/15/17/23/76 and 79, exclusively observed in rare, scattered salivary ductal basal cells, indicating the potential de novo source of SGSPC. We also identified an entire class of peroxiredoxin peroxidases, enriched in PG than SMG, and attendant H2O2-dependent cell proliferation in vitro suggesting a potential role for PRDX-dependent floodgate oxidative signaling in salivary homeostasis. The distinctive clinical resources and research insights presented here offer a foundation for exploring personalized regenerative medicine.

7.
Proteomics ; : e2400012, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470198

RESUMO

Asparagine-linked glycosylation 1 protein is a ß-1,4-mannosyltransferase, is encoded by the ALG1 gene, which catalyzes the first step of mannosylation in N-glycosylation. Pathogenic variants in ALG1 cause a rare autosomal recessive disorder termed as ALG1-CDG. We performed a quantitative proteomics and N-glycoproteomics study in fibroblasts derived from patients with one homozygous and two compound heterozygous pathogenic variants in ALG1. Several proteins that exhibited significant upregulation included insulin-like growth factor II and pleckstrin, whereas hyaluronan and proteoglycan link protein 1 was downregulated. These proteins are crucial for cell growth, survival and differentiation. Additionally, we observed a decrease in the expression of mitochondrial proteins and an increase in autophagy-related proteins, suggesting mitochondrial and cellular stress. N-glycoproteomics revealed the reduction in high-mannose and complex/hybrid glycopeptides derived from numerous proteins in patients explaining that defect in ALG1 has broad effects on glycosylation. Further, we detected an increase in several short oligosaccharides, including chitobiose (HexNAc2 ) trisaccharides (Hex-HexNAc2 ) and novel tetrasaccharides (NeuAc-Hex-HexNAc2 ) derived from essential proteins including LAMP1, CD44 and integrin. These changes in glycosylation were observed in all patients irrespective of their gene variants. Overall, our findings not only provide novel molecular insights into understanding ALG1-CDG but also offer short oligosaccharide-bearing peptides as potential biomarkers.

8.
Mol Cell Proteomics ; 23(3): 100733, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38342410

RESUMO

Nitrotyrosine, or 3-nitrotyrosine, is an oxidative post-translational modification induced by reactive nitrogen species. Although nitrotyrosine is considered a marker of oxidative stress and has been associated with inflammation, neurodegeneration, cardiovascular disease, and cancer, identification of nitrotyrosine-modified proteins remains challenging owing to its low stoichiometric levels in biological samples. To facilitate a comprehensive analysis of proteins and peptides containing nitrotyrosine, we optimized an immunoprecipitation-based enrichment workflow using a cell line model. The identification of proteins and peptides containing nitrotyrosine residues was carried out after peroxynitrite treatment of cell lysates, which generated modified nitrotyrosine residues on susceptible sites on proteins. We evaluated the efficacy of enriching nitrotyrosine-modified proteins and peptides by employing four different commercially available monoclonal antibodies directed against nitrotyrosine. LC-MS/MS analysis resulted in the identification of 1377 and 1624 nitrotyrosine-containing peptides from protein- and peptide-based enrichment experiments, respectively. Although the yield of nitrotyrosine-containing peptides was higher in experiments where peptides rather than proteins were enriched, we found a substantial proportion (37-65%) of identified nitrotyrosine-containing peptides contained nitrotyrosine at the N-terminus. However, in protein-based immunoprecipitation <9% of nitrotyrosine-containing peptides had nitrotyrosine modification at the N-terminus of the peptide. Overall, our study resulted in the identification of 2603 nitrotyrosine-containing peptides of which >2000 have not previously been reported. We synthesized 101 novel nitrotyrosine-containing peptides identified in our analysis and analyzed them by LC-MS/MS to validate our findings. We have confirmed the validity of 70% of these peptides, as they demonstrated a similarity score exceeding 0.7 when compared to peptides identified through experimental methods. Finally, we also validated the presence of nitrotyrosine modification on PKM and EF2 proteins in peroxynitrite-treated samples by immunoblot analysis. The large catalog presented in this study along with the workflow should facilitate the investigation of nitrotyrosine as an oxidative modification in a variety of settings in greater detail.


Assuntos
Ácido Peroxinitroso , Espectrometria de Massas em Tandem , Tirosina/análogos & derivados , Cromatografia Líquida/métodos , Proteínas/química , Peptídeos/química , Tirosina/metabolismo , Anticorpos
9.
bioRxiv ; 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38370780

RESUMO

While the functions of tyrosine phosphatases in T cell biology have been extensively studied, our knowledge on the contribution of serine/threonine phosphatases in T cells remains poor. Protein phosphatase 2A (PP2A) is one of the most abundantly expressed serine/threonine phosphatases. It is important in thymocyte development and CD4+ T cell differentiation. Utilizing a genetic model in which its catalytic subunit alpha isoform (PP2A Cα) is deleted in T cells, we investigated its contribution to CD8+ T cell homeostasis and effector functions. Our results demonstrate that T cell intrinsic PP2A Cα is critically required for CD8+ T cell homeostasis in secondary lymphoid organs and intestinal mucosal site. Importantly, PP2A Cα deficient CD8+ T cells exhibit reduced proliferation and survival. CD8+ T cell anti-bacterial response is strictly dependent on PP2A Cα. Expression of Bcl2 transgene rescues CD8+ T cell homeostasis in spleens, but not in intestinal mucosal site, nor does it restore the defective anti-bacterial responses. Finally, proteomics and phosphoproteomics analyses reveal potential targets dependent on PP2A Cα, including mTORC1 and AKT. Thus, PP2A Cα is a key modulator of CD8+ T cell homeostasis and effector functions.

10.
Clin Proteomics ; 21(1): 14, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389064

RESUMO

Serum or plasma is frequently utilized in biomedical research; however, its application is impeded by the requirement for invasive sample collection. The non-invasive nature of urine collection makes it an attractive alternative for disease characterization and biomarker discovery. Mass spectrometry-based protein profiling of urine has led to the discovery of several disease-associated biomarkers. Proteomic analysis of urine has not only been applied to disorders of the kidney and urinary bladder but also to conditions affecting distant organs because proteins excreted in the urine originate from multiple organs. This review provides a progress update on urinary proteomics carried out over the past decade. Studies summarized in this review have expanded the catalog of proteins detected in the urine in a variety of clinical conditions. The wide range of applications of urine analysis-from characterizing diseases to discovering predictive, diagnostic and prognostic markers-continues to drive investigations of the urinary proteome.

11.
PLoS Pathog ; 20(2): e1011990, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38324589

RESUMO

BACKGROUND: Hofbauer cells (HBCs) and cytotrophoblasts (CTBs) are major cell populations in placenta. The indirect impact of maternal SARS-CoV-2 disease on these cells that are not directly infected has not been extensively studied. Herein, we profiled gene expression in HBCs and CTBs isolated from placentae of recovered pregnant subjects infected with SARS-CoV-2 during all trimesters of pregnancy, placentae from subjects with active infection, SARS-CoV-2 vaccinated subjects, and those who were unexposed to the virus. METHODS: Placentae were collected within 4 h post-delivery and membrane-free tissues were enzymatically digested for the isolation of HBCs and CTBs. RNA extracted from HBCs and CTBs were sequenced using 150bp paired-end reads. Differentially expressed genes (DEGs) were identified by DESeq2 package in R and enriched in GO Biological Processes, KEGG Pathway, Reactome Gene Sets, Hallmark Gene Sets, and Canonical Pathways. Protein-protein interactions among the DEGs were modelled using STRING and BioGrid. RESULTS: Pregnant subjects (n = 30) were recruited and categorized into six groups: infected with SARS-CoV-2 in i) the first (1T, n = 4), ii) second (2T, n = 5), iii) third (3T, n = 5) trimester, iv) tested positive at delivery (Delivery, n = 5), v) never infected (Control, n = 6), and vi) fully mRNA-vaccinated by delivery (Vaccinated, n = 5). Compared to the Control group, gene expression analysis showed that HBCs from infected subjects had significantly altered gene expression profiles, with the 2T group having the highest number of DEGs (1,696), followed by 3T and 1T groups (1,656 and 958 DEGs, respectively). These DEGs were enriched for pathways involved in immune regulation for host defense, including production of cytokines, chemokines, antimicrobial proteins, ribosomal assembly, neutrophil degranulation inflammation, morphogenesis, and cell migration/adhesion. Protein-protein interaction analysis mapped these DEGs with oxidative phosphorylation, translation, extracellular matrix organization, and type I interferon signaling. Only 95, 23, and 8 DEGs were identified in CTBs of 1T, 2T, and 3T groups, respectively. Similarly, 11 and 3 DEGs were identified in CTBs and HBCs of vaccinated subjects, respectively. Reassuringly, mRNA vaccination did not induce an inflammatory response in placental cells. CONCLUSIONS: Our studies demonstrate a significant impact of indirect SARS-CoV-2 infection on gene expression of inner mesenchymal HBCs, with limited effect on lining CTB cells isolated from pregnant subjects infected and recovered from SARS-CoV-2. The pathways associated with these DEGs identify potential targets for therapeutic intervention.


Assuntos
COVID-19 , Placenta , Gravidez , Feminino , Humanos , COVID-19/genética , COVID-19/metabolismo , SARS-CoV-2/genética , Trofoblastos/metabolismo , Transcriptoma , RNA Mensageiro/metabolismo
12.
Exp Eye Res ; 240: 109798, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38246332

RESUMO

Retinoblastoma (RB) is a rare ocular cancer seen in children that counts for approximately 3% of all childhood cancers. It is found that mutation in RB1, a tumour Suppressor Gene on chromosome 13 as the cause of malignancy. Retinoblastoma protein is the target for ceramide to cause apoptosis. We studied lipidomics of two RB cell lines, one aggressive cell line (NCC-RbC-51) derived from a metastatic site and one non aggressive cell line (WERI-Rb1) in comparison with a control cell line (MIO-M1). Lipid profiles of all the cell lines were studied using high resolution mass spectrometer coupled to high performance liquid chromatography. Data acquired from all the three cell lines in positive mode were analyzed to identify differentially expressed metabolites. Several phospholipids and lysophospholipids were found to be dysregulated. We observed upregulation of hexosyl ceramides, and down regulation of dihydroceramides and higher order sphingoglycolipids hinting at a hindered sphingolipid biosynthesis. The results obtained from liquid chromatography-mass spectrometry are validated by using qPCR and it was observed that genes involved in ceramide biosynthesis pathway are getting down regulated.


Assuntos
Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Retinoblastoma/patologia , Esfingolipídeos/metabolismo , 60705 , Ceramidas/metabolismo , Neoplasias da Retina/genética , Neoplasias da Retina/patologia
13.
OMICS ; 28(2): 76-89, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38271566

RESUMO

Gastric cancer (GC) remains a leading cause of cancer-related mortality globally. This is due to the fact that majority of the cases of GC are diagnosed at an advanced stage when the treatment options are limited and prognosis is poor. The diffuse subtype of gastric cancer (DGC) under Lauren's classification is more aggressive and usually occurs in younger patients than the intestinal subtype. The concept of personalized medicine is leading to the identification of multiple biomarkers in a large variety of cancers using different combinations of omics technologies. Proteomic changes including post-translational modifications are crucial in oncogenesis. We analyzed the phosphoproteome of DGC by using paired fresh frozen tumor and adjacent normal tissue from five patients diagnosed with DGC. We found proteins involved in the epithelial-to-mesenchymal transition (EMT), c-MYC pathway, and semaphorin pathways to be differentially phosphorylated in DGC tissues. We identified three kinases, namely, bromodomain adjacent to the zinc finger domain 1B (BAZ1B), WNK lysine-deficient protein kinase 1 (WNK1), and myosin light-chain kinase (MLCK) to be hyperphosphorylated, and one kinase, AP2-associated protein kinase 1 (AAK1), to be hypophosphorylated. LMNA hyperphosphorylation at serine 392 (S392) was demonstrated in DGC using immunohistochemistry. Importantly, we have detected heparin-binding growth factor (HDGF), heat shock protein 90 (HSP90), and FTH1 as potential therapeutic targets in DGC, as drugs targeting these proteins are currently under investigation in clinical trials. Although these new findings need to be replicated in larger study samples, they advance our understanding of signaling alterations in DGC, which could lead to potentially novel actionable targets in GC.


Assuntos
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/genética , Medicina de Precisão , Proteômica , Fosforilação , Carcinogênese , Proteínas que Contêm Bromodomínio , Fatores de Transcrição/metabolismo
14.
Proteomics ; : e2300495, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38212249

RESUMO

Thalassemias are a group of inherited monogenic disorders characterized by defects in the synthesis of one or more of the globin chain subunits of the hemoglobin tetramer. Delta-beta (δß-) thalassemia has large deletions in the ß globin gene cluster involving δ- and ß-globin genes, leading to absent or reduced synthesis of both δ- and ß-globin chains. Here, we used direct globin-chain analysis using tandem mass spectrometry for the diagnosis of δß-thalassemia. Two cases from unrelated families were recruited for the study based on clinical and hematological evaluation. Peptides obtained after trypsin digestion of proteins extracted from red blood cell pellets from two affected individuals and their parents were analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Mass spectrometric analysis revealed a severe reduction in δ, ß, and Aγ globin proteins with increased G γ globin protein in the affected individuals. The diagnosis of G γ(A γδß)0 -thalassemia in the homozygous state in the affected individuals and in the heterozygous state in the parents was made from our results. The diagnosis was confirmed at the genetic level using multiplex ligation-dependent probe amplification (MLPA). Our findings demonstrate the utility of direct globin protein quantitation using LC-MS/MS to quantify individual globin proteins reflecting changes in globin production. This approach can be utilized for accurate and timely diagnosis of hemoglobinopathies, including rare variants, where existing diagnostic methods provide inconclusive results.

15.
J Infect Dis ; 229(2): 473-484, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-37786979

RESUMO

Despite intensive characterization of immune responses after COVID-19 infection and vaccination, research examining protective correlates of vertical transmission in pregnancy are limited. Herein, we profiled humoral and cellular characteristics in pregnant women infected or vaccinated at different trimesters and in their corresponding newborns. We noted a significant correlation between spike S1-specific IgG antibody and its RBD-ACE2 blocking activity (receptor-binding domain-human angiotensin-converting enzyme 2) in maternal and cord plasma (P < .001, R > 0.90). Blocking activity of spike S1-specific IgG was significantly higher in pregnant women infected during the third trimester than the first and second trimesters. Elevated levels of 28 cytokines/chemokines, mainly proinflammatory, were noted in maternal plasma with infection at delivery, while cord plasma with maternal infection 2 weeks before delivery exhibited the emergence of anti-inflammatory cytokines. Our data support vertical transmission of protective SARS-CoV-2-specific antibodies. This vertical antibody transmission and the presence of anti-inflammatory cytokines in cord blood may offset adverse outcomes of inflammation in exposed newborns.


Assuntos
COVID-19 , Complicações Infecciosas na Gravidez , Recém-Nascido , Gravidez , Humanos , Feminino , SARS-CoV-2 , Anticorpos Antivirais , Citocinas , Anti-Inflamatórios
16.
Clin Proteomics ; 20(1): 56, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053024

RESUMO

BACKGROUND: Cell surface proteins perform critical functions related to immune response, signal transduction, cell-cell interactions, and cell migration. Expression of specific cell surface proteins can determine cell-type identity, and can be altered in diseases including infections, cancer and genetic disorders. Identification of the cell surface proteome remains a challenge despite several enrichment methods exploiting their biochemical and biophysical properties. METHODS: Here, we report a novel method for enrichment of proteins localized to cell surface. We developed this new approach designated surface Biotinylation Site Identification Technology (sBioSITe) by adapting our previously published method for direct identification of biotinylated peptides. In this strategy, the primary amine groups of lysines on proteins on the surface of live cells are first labeled with biotin, and subsequently, biotinylated peptides are enriched by anti-biotin antibodies and analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: By direct detection of biotinylated lysines from PC-3, a prostate cancer cell line, using sBioSITe, we identified 5851 peptides biotinylated on the cell surface that were derived from 1409 proteins. Of these proteins, 533 were previously shown or predicted to be localized to the cell surface or secreted extracellularly. Several of the identified cell surface markers have known associations with prostate cancer and metastasis including CD59, 4F2 cell-surface antigen heavy chain (SLC3A2) and adhesion G protein-coupled receptor E5 (CD97). Importantly, we identified several biotinylated peptides derived from plectin and nucleolin, both of which are not annotated in surface proteome databases but have been shown to have aberrant surface localization in certain cancers highlighting the utility of this method. CONCLUSIONS: Detection of biotinylation sites on cell surface proteins using sBioSITe provides a reliable method for identifying cell surface proteins. This strategy complements existing methods for detection of cell surface expressed proteins especially in discovery-based proteomics approaches.

17.
NPJ Breast Cancer ; 9(1): 101, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114522

RESUMO

Endoxifen, a secondary tamoxifen metabolite, is a potent antiestrogen exhibiting estrogen receptor alpha (ERα) binding at nanomolar concentrations. Phase I/II clinical trials identified clinical activity of Z-endoxifen (ENDX), in endocrine-refractory metastatic breast cancer as well as ERα+ solid tumors, raising the possibility that ENDX may have a second, ERα-independent, mechanism of action. An unbiased mass spectrometry approach revealed that ENDX concentrations achieved clinically with direct ENDX administration (5 µM), but not low concentrations observed during tamoxifen treatment (<0.1 µM), profoundly altered the phosphoproteome of the aromatase expressing MCF7AC1 cells with limited impact on the total proteome. Computational analysis revealed protein kinase C beta (PKCß) and protein kinase B alpha or AKT1 as potential kinases responsible for mediating ENDX effects on protein phosphorylation. ENDX more potently inhibited PKCß1 kinase activity compared to other PKC isoforms, and ENDX binding to PKCß1 was confirmed using Surface Plasma Resonance. Under conditions that activated PKC/AKT signaling, ENDX induced PKCß1 degradation, attenuated PKCß1-activated AKTSer473 phosphorylation, diminished AKT substrate phosphorylation, and induced apoptosis. ENDX's effects on AKT were phenocopied by siRNA-mediated PKCß1 knockdown or treatment with the pan-AKT inhibitor, MK-2206, while overexpression of constitutively active AKT diminished ENDX-induced apoptosis. These findings, which identify PKCß1 as an ENDX target, indicate that PKCß1/ENDX interactions suppress AKT signaling and induce apoptosis in breast cancer.

18.
Microrna ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37873952

RESUMO

BACKGROUND: Breast cancer is one of the leading causes of cancer deaths in women. Early diagnosis offers the best hope for a cure. Ductal carcinoma in situ is considered a precursor of invasive ductal carcinoma of the breast. In this study, we carried out microRNA sequencing from 7 ductal carcinoma in situ (DCIS), 6 infiltrating ductal carcinomas (IDC Stage IIA) with paired normal, and 5 unpaired normal breast tissue samples. We identified 76 miRNAs that were differentially expressed in DCIS and IDC. METHODS: Additionally, we provide preliminary evidence of miR-365b-3p and miR-7-1-3p being overexpressed, and miR-6507-5p, miR-487b-3p, and miR-654-3p being downregulated in DCIS relative to normal breast tissue. We also identified a miRNA miR-766-3p that was overexpressed in early-stage IDCs. The overexpression of miR-301a-3p in DCIS and IDC was confirmed in 32 independent breast cancer tissue samples. RESULTS: Higher expression of miR-301a-3p is associated with poor overall survival in The Can-cer Genome Atlas Breast Cancer (TCGA-BRCA) dataset, indicating that it may be associated with DCIS at high risk of progressing to IDC and warrants deeper investigation. CONCLUSION: We also analyzed competing endogenous networks associated with differentially expressed miRNAs and identified LRRC75A-AS1 and MAGI2-AS3 as lncRNAs that potentially play an important role in early-stage breast cancers.

20.
J Am Soc Mass Spectrom ; 34(10): 2087-2092, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37657774

RESUMO

Although tandem mass tag (TMT)-based isobaric labeling has become a powerful approach for multiplexed protein quantitation, automating the workflow for this technique has not been easy to achieve for widespread adoption. This is because preparation of TMT-labeled peptide samples involves multiple steps ranging from protein extraction, denaturation, reduction, and alkylation to tryptic digestion, desalting, labeling, and cleanup, all of which require a high level of proficiency. The variability resulting from multiple processing steps is inherently problematic, especially with large-scale clinical studies that involve hundreds of samples where reproducibility is critical for quantitation. Here, we sought to compare the performance of a recently introduced platform, AccelerOme, for an automated proteomic workflow employing TMT labeling with the manual processing of samples. Cell pellets were prepared and subjected to a 16-plex experiment using an automated platform and a conventional manual protocol. Single-shot liquid chromatography with tandem mass spectrometry analysis revealed a higher number of proteins and peptides identified using the automated platform. Efficiency of tryptic digestion, alkylation, and TMT labeling were similar in both manual and automated processes. In addition, comparison of quantitation accuracy and precision showed similar performance in an automated workflow compared to manual sample preparation by an expert. Overall, we demonstrated that the automated platform performs at a level similar to a manual process performed by an expert for TMT-based proteomics. We anticipate that this automated workflow will increasingly replace manual pipelines and has the potential to be applied to large-scale TMT-based studies, providing robust results and high sample throughput.


Assuntos
Proteínas , Proteômica , Proteômica/métodos , Fluxo de Trabalho , Reprodutibilidade dos Testes , Proteínas/química , Peptídeos , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...